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On the Brownian Motion of a Massive Sphere 
Suspended in a Hard-Sphere Fluid. 
I. Multiple-Time-Scale Analysis and Microscopic 
Expression for the Friction Coefficient 

Lyd~ric Bocquet, 1 Jaroslaw Piasecki, L2 and Jean-Pierre Hansen 

Received September 14. 1993." final February 10, 1994 

The Fokker-Planck equation governing the evolution of the distribution func- 
tion of a massive Brownian hard sphere suspended in a fluid of much lighter 
spheres is derived from the exact hierarchy of kinetic equations for the total 
system via a multiple-time-scale analysis akin to a uniform expansion in powers 
of the square root of the mass ratio. The derivation leads to an exact expression 
for the friction coefficient which naturally splits into an Enskog contribution 
and a dynamical correction. The latter, which accounts for correlated collisions 
events, reduces to the integral of a time-displaced correlation function of 
dynamical variables linked to the collisional transfer of momentum between the 
infinitively heavy (i.e., immobile) Brownian sphere and the fluid particles. 

KEY WORDS: Brownian motion; hard-sphere fluid; friction coefficient; 
kinetic theory; Enskog theory. 

1. INTRODUCTION 

Since the p ionee r ing  work  of Einste in ,  Langevin ,  P lanck ,  and  Smoluchowski ,  
the dynamics  of mesoscopic  part icles suspended  in a fluid has been the 
object  of c o n t i n u o u s  exper imenta l  a n d  theoret ical  inves t iga t ions  by m a n y  
authors .  As long  as the P6clet n u m b e r  Pe, i.e., the rat io of character is t ic  
t imes associa ted with diffusive an d  convect ive  m o t i o n  of the particles,  is 
much  larger  t h a n  one,  the m o t i o n  is ent i re ly  governed  by macroscop ic  
hydrodynamics .  In  par t icular ,  the d rag  exerted by the fluid on  a single 
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suspended particle is given by Stokes' law, while the much more difficult 
problem of the hydrodynamic interactions between particles, induced by 
interfering backflow patterns of the fluid in concentrated suspensions, has 
been the object of intense investigation over the last two decades (see, e.g., 
ref. 1). In the opposite regime where Pe < 1, the thermal fluctuations of the 
host fluid can no longer be neglected, i.e., the discrete molecular nature of 
the fluid gives rise to "erratic" Brownian motion of the suspended particles. 
This regime typically holds for particles having diameters of the order of 
1/am or less. The interest in the Brownian motion of dilute and concen- 
trated suspensions of submicrometer spherical particles has seen a strong 
recent revival, due to the availability of synthetic colloidal particles of well- 
controlled composition, size, and charge, and of powerful dynamic light 
scattering techniques (photon correlation spectroscopy), which provide 
a convenient and accurate probe of collective dynamics in such stable 
colloidal suspensions (see, e.g., ref. 2). 

The statistical description of systems as asymmetric as these suspen- 
sions, which involve very disparate size and time scales, presents a for- 
midable theoretical challenge. The traditional approach is a stochastic one, 
whereby the thermal motion of the fluid molecules gives rise to a random 
force acting on the individual colloidal particles. For the description of the 
motion of a single Brownian particle, this approach culminates in the 
Fokker-Planck equation, which governs the time evolution of the distribu- 
tion function associated with this particle. TM The Fokker-Planck descrip- 
tion may be extended to concentrated suspensions of interacting Brownian 
particles, t4) but this approach is limited by the complexity and lack of 
understanding of indirect, hydrodynamic interactions between the particles. 

Despite the aforementioned disparity in length and time scales, some 
attempts at a fully microscopic (or "first principles") description of the 
dynamics of suspended particles have been made. In particular, it has been 
possible to derive the Fokker-Planck equation for a single Brownian par- 
ticle from the complete dynamical equations (i.e., the Liouville equation 
and the resulting BBGKY hierarchy) for the system made up of one 
massive particle and N fluid (bath) particles via a systematic expansion in 
powers of the square root of the mass ratio e = (m/M) j/2 (where M and m 
are the masses of the Brownian and bath particles), t5 7) Such derivations 
lead, in particular, to a microscopic formula for the friction coefficient (, 
which results from the action of the fluid on the Brownian particle, in terms 
of the autocorrelation function of the instantaneous microscopic force 
experienced by that particle. The reduction of the full Liouville equation to 
a Fokker-Planck equation has been generalized to the case of n interacting 
Brownian particles, and an Einstein relation between diffusion and friction 
tensors has been obtained. ~s) 
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Approximate kinetic equations have been used to calculate the fric- 
tional drag exerted by the host fluid on a massive Brownian particle. If the 
latter is much larger than the bath molecules, the friction coefficient is 
expected to be given by the macroscopic Stokes law: 

_ 4rcqR  

M (1) 

where M and R are the mass and radius of the spherical Brownian particle, 
while q is the shear viscosity of the bath. In their seminal paper, which 
dealt with the dilute gas limit for the host fluid, Dorfman e t  aL (9) already 
pointed out the crucial importance of recollision events in deriving the 
correct expression for ( in the limit where the mean free path of the bath 
particles is much less than the radius of the Brownian particle. In order to 
account, at least approximately, for dynamical correlations, subsequent 
kinetic calculations (1~ used the repeated-ring collision operator for hard- 
sphere fluids tl~) or the closely related mode coupling approach in the case 
of continuous interactions between particles, t12~ 

In the present paper, the first of a series devoted to the kinetic theory 
of colloid dynamics in a hard-sphere fluid, we derive the Fokker-Planck 
equation for a single massive hard sphere, by adapting Cukier and 
Deutch's ~6~ multiple-time-scale analysis to a system of hard spheres. Due to 
the instantaneous nature of the collisions, the expansion scheme for hard 
spheres differs in many a'gpects from that obtained by Cukier and Deutch 
for the continuous case. The main result is an explicit, exact expression for 
the friction coefficient (, valid in the Brownian limit e ,~ 1, for arbitrary 
fixed size ratio. ( turns out to split naturally into the sum of an Enskog 
contribution and a correction arising from dynamical correlations, which is 
the integral over time of a momentum transfer correlation function, to be 
evaluated for an infinitely massive Brownian particle. The so-called Enskog 
contribution could be obtained directly from the low-mass-ratio limit of 
the Enskog equation, t13~ Practical procedures to evaluate the dynamical 
corrections by molecular dynamics simulations will be described and 
implemented in the second paper of the series. 

2. HARD-SPHERE HIERARCHY OF KINETIC EQUATIONS 

We consider here a hard sphere of mass M and diameter X immersed 
in a hard-sphere fluid composed of particles of mass m and diameter a. Our 
object is to study the dynamics of the system in the limit 

= ~ 1 (2) 
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at fixed particle diameters _r and a. The sphere (M, Z') will be called the 
Brownian particle. Its position and velocity will be denoted by R and V, 
respectively. We shall use the notation ri, v i for the position and velocity of 
particle j of the suspending fluid. The short-hand notation 

B-= (R, V); j =  (rj, vi), j = l ,  2 .... 

will be convenient. 
We wish to determine the evolution of the probability density 

(3) 

f~(R, V; t) - f~ (B ;  t) (4) 

for finding the Brownian particle at point R with velocity V at time t. To 
this end we introduce the reduced distributions 

fl,,(B, 1, 2 ..... s; t), s = 1, 2 .... (5) 

representing at time t the number density of s-tuples of fluid particles 
occupying the states 

( 1 , 2  ..... s ) -=  (rt .  v , ,  r : ,  v2 ..... r . , v ~ )  (6) 

when at the same time the state of the Brownian particle is B = (R, V). The 
densities (4) and (5) are coupled by an infinite hierarchy of equations: 

~ + V - ~ - R  f~(B; t)=;dl T_(B, 1)f , , (B,  1; t) (7) 

0 0 ~ ,," r _ ( B , j ) - ~  ~ T_<i,j) 
~ + v . ~ +  ,<J 

i =  1 " " ~  

• f~(B, 1 ..... s; t) 

j = l  

x f,<,+ I~(B , 1 ..... ( s+  1); t) (8) 

with s = 1, 2 ..... The first of these, Eq. (7), expresses the fact that the state 
of the Brownian particle is changing in the course of time owing to free 
motion and to bihary collisions with the fluid particles. The notation 
dl---dr~ dv~ has been used. T_(B, t) is the hard-sphere binary collision 
operator, which can be written as 
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= - -  d~ [(V- vl). e] 0[(V- v~). e] 

,9, 

In Eq. (9), the integration ~ de spreads over the surface of a unit sphere 
[d[ = 1. The operator b~(B, 1 ), when applied to a function z(V, vt), replaces 
the velocities V, v~ by their postcollisional values 

( V -  2~2 
[bo(B, 1)x](V, vj)=X\ 1 +e2 [ ( V - - v l ) ' d ]  d, 

v, + T - ~  [(V-v~).e] e (1o) 

0 is the Heaviside unit step function. The explicit form of Eq. (7) is thus 

0 B 

= f e , , f e e E ( v - , , ) . e ? 0 E ( v - , , ) . e ?  

x f t l  R , V - I - - ~ e 2 [ ( V - v I ) ' d ] d , R -  e, 

vl + ~  [ ( v -  v~). e] e;t 

- f , ,  R, V, R + ~-----~] a, v, ; t (11) 

In Eq. (8),  in addition to the operator T (B, j)  describing collisions between 
the Brownian particle and the fluid particles, there appear the binary colli- 
sion operators ~_ (i, j)  representing the effect of elastic encounters between 
identical spheres-of diameter ~ and mass m (fluid particles). Using the 
notation 

vii = v i -  vi (12)  

rij  = r i - -  r j  
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we can cast T_ in the form 

T (i, j)  = a 2 f d6 (Vlj" if) 0(u " #)  

x {6(rlj - a6) ba(i, j)  - 6(rli + a6)} (13) 

where the operator b,~(i, j)  acts according to the binary collision law 

[ba(i, j ) z l ( Y i ,  Vj) = ~((V i - -  (Vii" 6)(~, Vj q- (Vii" 6)6)  (14) 

where ;( is any function of the variables vi, v i. 
The hierarchy (7), (8) follows from the so-called pseudo-Liouville 

equation (ref. 14; see also ref. 3, pp. 241-247) 

{ a a , i  a " T _ ( B , j )  
. : ,  

} - - ~  ~ T_( i , j )  p(B, 1,2 ..... N ; t ) = 0  (15) 
i < j  

which describes the evolution of the state p(B, 1, 2 ..... N; t) of the total 
(Brownian particle + N  fluid particles) system. 

We are interested in the Brownian motion under thermal equilibrium 
conditions when the characteristic velocities of the Brownian and the fluid 
particles are (k B TtM) w2 and (k B Tim) w2, respectively ( T is the temperature). 
When e = (re~M) w2 ~ 0, separation of time scales is to be expected. A con- 
venient way of describing this situation is to use a set of dimensionless 
variables defined by 

V = U, v i =  - -  u i 

R = aX, r i = ax i (16) 

( m ~  t/2 

The velocities U, ui are essentially of order 1. The distances are measured 
in units of a, and the unit of time was chosen to be the time needed to 
cover the distance a with the fluid thermal velocity (kr~T/m) ~/'-. Conse- 
quently, the distributions f~ (B; t), f~ ~ (B, 1; t) are replaced by dimensionless 
distributions Ft (B, T), F~ i(B, 1; ~) defined through the conditions 

FI(B, "r) dX dU = fj(B; t) dR dV 
(17) 

FtI(B, 1; ~) dX dU dx~ dul =f~l(B, 1; t) dR dV drl dr ,  
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Equations (16) and (17) imply the relations 

FI( B, r) = o'3(ka T I M )  3/2 f ,( B; t) 
(18) 

Fu( B, 1; z) = a6(kB T/M) 3/z (kB T/m) 3/z f ll( B, 1; t) 

With the new, reduced variables, the first hierarchy equation (7) takes the 
form 

0 + eU �9 ~--~ Ft(B;z)=IdlT~(B,  1) F~(B, I; r) (19) g 

where 

1 +x'~ 2 
T~ (B, 1 ) = \ - - - ~  ] I d d [ ( e U - u t ) ' f ] O [ ( e U - u , ) ' 6 ]  

\ 2K / / 6 - x l ) b ~ ( B ' l )  

In Eq. (20), K=a/s and the operator b;(B, 1) 
velocities U, u~ according to the formula 

[b;(B, 1)x](U, u,) 

(20) 

2e 2 ) 
=x u -  1-77 [{~u- . , ) .  e?e, u, + T-~_, E(~u- u,)" e]e  (21) 

The subsequent analysis will be based on an expansion of the collision 
term in Eq. (19) in powers of e. This is achieved by formally expanding the 
binary collision operator T ~_ (B, 1) in powers of g, such that the right-hand 
side (r.h.s.) of Eq. (19) becomes 

f d l  7"5(B, 1)F,t(B, l ; z ) = f d l  T~'(B, l)FII(B, l,'t') 

+j"d l  T~ 1)F~j(B, 1;Q 

+ f  dl  TtE~(B, 1) F,,(B, 1; z) 

+ ... (22) 

acts on functions of 
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Explicit expressions for T~ ~ and ~P~ are given in the Appendix, and will 
be used later. An alternative, simpler way of obtaining the e-expansion of 
the collision term follows from direct substitution of Eqs. (20) and (21) 
into the r.h.s, of Eq. (19). This leads, after a straightforward integration 
over x~, to the following form of the hierarchy equation: 

~-~T + eU �9 ~-~ F,(X, U; r) 

/ l + x \  z 
= / - z - - - /  J a u ,  ~d,~ [ ( e U - u , ) ' a ]  O [ ( e U - u , ) - a ]  

\ z x /  

x F~, X , U  l + e  22e [ ( e U - u ~ ) ' # l # , •  2~ /#' 

) u~ + ~ I-(eU- u~)" ~] #; ~ 

+(1 +K'~ 

In view of the desired e-expansion, it is convenient to transform the gain 
term on the r.h.s, of Eq. (23) by introducing a new integration variable 

w = ul - ~U + 2[(eU - ul)" #]  d (24) 

The gain term then takes the form 

2e _ /1 +rc~ 
, ,el ,  

2e2 ) 
w + e U - ~ ( w . # ) O ; T  (25) 

Similarly the loss term is transformed by performing the following change 
of integration variables: 

uj --+ w = u~ - e U ;  # --, - 6  ( 2 6 )  

which leads to 

\~x +x~2 ~ f d#(w.6)O(w.6) - j aw 

x [ l + ~ c ' ~ .  ~ x F ,  t ( X , U ,  -~--2-~-K ) o ' , w + e U ;  (27) / 
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Using Eqs. (25) and (27), we can cast the first hierarchy equation (23) in 
the final form 

(~z + ,U'~x)F~(X,  U; T) 

\ - ~ - ]  j dw f da (w. 6) O(w. ~) 

x F~ X,U-l - - -~2(w'~)d ,X \ 2x /6 ,  

w+~U- 12~-- '" (w" e) ~; 3 ) + , 2  

- F ~  X,U,X \ 2x / d , w + , U ; 3  (28) 

The zeroth-order term vanishes, 

f d l  T~(B, 1)Ftt(B, 1;r)=0 (29) 

The first-order term is given by 

f d l  ~'~I(B, 1)FI,(B, 1;3) 

=(1 +~'] 2 \ -~--j  f ~w S de E-2/w. ~/2 ocw.~)j 

while the second-order term reads 

f dl I"~(B, 1)F~(B, 1;3) 

= \ - 5 U /  

xF,, X , U , X - \ - - ~ / 6 ,  w;r (31) 
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Having established these results, we now turn to the remaining 
hierarchy equations. Their general form (8) reflects the coupling between 
distr;.butions f~s and f , s +  3)- When s = 1 we find 

~+V'~--~+v,'~r=-T (B,I) f , t ( B , l ; t )  

f d2 {T_ (B, 2 )+  T_ (1, 2)} f,2(B, 1, 2; t) (32) 

We now perform the same dimensional analysis as in the case of the first 
hierarchy equation and define the dimensionless three-particle density 
F~2(B, 1, 2; z) according to 

Ft2(B, 1,2;z)=aV(ksT/M)3/2(ksT/m)6/2f t2(B,  1, 2; t) (33) 

so that, in view of Eqs. (16), 

FI2(B, 1, 2; r) dX dU dxl dul dxz du2 

=f,2(B, 1, 2; t) dR dV dr1 dr1 dr2 dr2 (34) 

The second hierarchy equation now takes the form 

{0 0 } 
~ r + e U - ~ - - ~ + u , - ~ x - T ~ _ ( B ,  1) Ft~(B, 1;z) 

= f d 2 { T ~ : ( B ,  2 ) + T d ( 1 , 2 ) } F , 2 ( B ,  1,2;~) (35) 

where the operators T ~_ (B, j), j = 1, 2 ..... have been defined in Eq. (20). In 
Eq. (35), IT~ denotes the binary collision operator of the fluid particles, 
expressed in terms of the dimensionless variables 

T d _ ( l , 2 ) = f  d# (u l z ' # )O(u12"d) {5 (x12-d )ba (12) -6 (x t2+6)}  (36) 

Similarly, the general hierarchy equation relating dimensionless distribu- 
tions F,s(B, 1 ..... s;z) and F,~+~I(B, 1 ..... s, ( s+  1);z) reads 

x FI.~(B , 1 ..... s; z) 

x Fl(, + ll(B, 1 ..... s, (s + 1);z) (37) 
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3. MULTIPLE-T IME-SCALE ANALYSIS 

At this point we are in a posit ion to turn to our main object, i.e., the 
equation governing the evolution of the distribution F~(B; ~) in the case 
where a ,~ 1. The separation of time scales in the limit e ~ 0 suggests the 
application of the multiple-time-scale analysis similar in spirit to that used 
in ref. 6 in the case of continuous interactions between particles. Limiting 
the analysis to three time scales, we thus replace the distributions F~, FI, 
by auxiliary functions F~(B; %, z~, z2), F~�9 l ..... s; Zo, ~,, %), depending 
on three time arguments. Accordingly, the time derivative 3/& is replaced 
by the operator 

O d 
~-~-~r +~ 2 m  (38) 

&o Or2 
since we have in mind the perturbation expansion up to terms of order e 2. 
The auxiliary functions are next expanded in powers of e, 

F] = Fl,~ + er] ')  + e2F]Z) + . . .  (39) 

F] s = F]O) + eF~l I .  ~2~121 (40) 
�9 I s  - -  ~ - - I s  + " ' "  

and substituted into the hierarchy equations, where terms of the same order 
in e will eventually be identified. The determination of successive corrections 
FC~ ~, F]~), k = 0 ,  1, 2 ..... will be achieved by combining the chosen initial 
condition with the requirement that the expansions be uniform in e, which 
amounts to eliminating secular divergences. The physically relevant distri- 
butions, i.e., the perturbative solution of the hierarchy (28), (37), are then 
obtained by restricting the multiple time variables to, r , ,  r2 to the physical 
line 

z0=r ,  z I =e'r, r2=ezz  (41) 

In particular, up to terms of order a2, 

FI(B; z)=  F](B; z, ez, e2z) (42) 

Equation (41) shows that the dependence of the reduced distributions on 
the variable zj essentially defines the dynamical evolution on the time scale 
z ~ e - Y , j = O ,  1,2 ..... 

4. ZEROTH-ORDER A N D  INITIAL CONDIT ION 

We begin by analyzing the zeroth-order terms in the hierarchy equa- 
tions�9 Equation (19) together with Eq. (29) yields 

0 
dr----~ F~~ = 0 (43) 
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Hence, F~ ~ does not depend on the variable %. The corresponding general 
hierarchy equat ion (37) reads to zeroth order 

. , .  - 

j = l  j = l  ~ X j  < 

=j'd(s+l) ~ ~d (j, (s+ I)) r.,O,_,(,+,, (44) 
j = l  

In Eq. (44) the Brownian particle appears  as the source of an external field, 
corresponding to the presence of an infinite spherical mass at point  X from 
which the fluid particles are specularly reflected [see Eq. (A.2)]. In view of 
this we choose the solution of the hierarchy (44) in the factorized form 

r F]~ 1 ..... s;ro, t~ , r2)=F]~ (1 ..... s i X )  (45) 

where F~q(1,..., s l X) is the s-particle equilibrium distribution of the fluid in 
the presence of the Brownian particle fixed at point X (external field). In 
particular,  

F]q(l  [ X) = h]q(lxl - XI) ~b(u~ ) (46) 

where 

~b(u) = (2n) - 3/,_ exp( - u2/2) (47) 

is the Maxwell distribution and h~q( Ix~-Xl )  is the dimensionless equi- 
librium fluid density at point xl in the field of  the Brownian particle 
fixed at X. Clearly this density depends only on the distance I x ~ -  XI. In 
principle, the distributions ~q F,. (1 ..... s iX) ,  s =  1, 2 ..... can be determined 
from the equilibrium hierarchy: 

f i: 
I i < j  j = l  

=Id(s+l )  ~ Td(j, (s+ 1))F('q.,) (48) 
j = l  

When multiplied by F~~ tL, r2), Eqs. (48) take the form (44); they do 
not impose any condition on the distribution of the Brownian particle. 

The choice (45) makes  all distributions of order zero independent of 
the time variable t o. Moreover ,  we shall assume that  the condit ional equi- 
librium of the fluid described above is the initial state of the system, so that  

F~,(B, 1 ..... s; z o = O, r l = O, zz = O) = F~~ z l = O, zz = O) F e q ( l  ..... s i X  ) 

F~(B; r I = 0 ,  r,_ = 0 ) =  Ftl~ t l  = 0 ,  r 2 = 0 )  (49) 
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Outside the "physical line" (41), one has the freedom of imposing con- 
venient boundary conditions. We use this freedom here by setting [in 
accordance with Eq. (49)-I 

F~')(B; t o=0 ,  zl, t 2 ) = 0  
(50) 

F~I(B, 1 ..... s; t o = 0 ,  t , ,  t 2 ) = 0  

for k =  1, 2 .... and arbitrary t , ,  t2. 
Equations (43), (45), (49), and (50) specify entirely the starting point 

of the perturbative expansion. We can now turn to the analysis of the first- 
order terms in the dynamical hierarchy. 

5. F I R S T - O R D E R  A N D  F R E E  M O T I O N  

To first order in e, the first hierarchy equation (19) yields together 
with Eq. (30) 

0 t  0 I 

dw f d~ [--2(w" #)20(w" 6)] \ - - ~ Z ]  J 

x a ' -~  \ 2x ]6, w;tl,r2 (51) 

Since F~ ~ and the r.h.s, of (51) are independent of %, secular divergence 
is eliminated provided we set 

& 
Ot----o F]'  I = 0 (52) 

Since Fl~'~l,0=o=0 according to Eq. (50), we find that 

F] ' I-=0 (53) 

With our choice of initial condition there is thus no first-order correction 
to the Brownian particle distribution function. Remembering (45) and (46), 
we now insert the relation 

�9 

F' ,~ w ; t , , t 2  ) 

= r]~ U; t , ,  r2) hi q (1 + K~ \ 2~c /~b(w) (54) 
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into the r.h.s, of Eq. (51) and find that the collision term vanishes as a 
result of the isotropy of the fluid density around the Brownian particle. 
Hence 

on the Equation (55) determines the dependence of the distribution FIt ~ 
time variable rt ,  

Fll~ U; 3t, 32)= Ftt~ 3, U, U; z I = 0, r2) (56) 

We conclude that on the corresponding time scale, 3,-, e-~, the Brownian 
particle "does not see" the fluid. Its distribution evolves in time due to free 
particle motion. 

6. SECOND ORDER AND DISSIPATION 

To determine the dissipative effect of the interaction with the fluid we 
have to study the evolution of F~ ~ on a longer time scale, corresponding 
to the variable 32. To this end the second-order term resulting from the 
hierarchy equation (19) has to be considered. Taking Eqs. (29), (45), and 
(53) into account, we find 

O-~2F(|~ 31 , 3 2 ) 3 0 ,  T 1 , F~|Z~(B; + 3 2 )  030 

= f a l  {T2'IB, 1) r~,','(8, 1;~0, 3,, 32)+ T~'(8, 1) F~~ 1' 3,, 32)} 
(57) 

Secular divergence is eliminated (and hence a uniform expansion achieved) 
provided the condition 

~-~--F~I2~(B; 3o, 31,32)=0 lim (58) 
t 0 ~  co  VZo 

is fulfilled, which is equivalent to 

d 
Ftt~ zt, z2)= lim I dl  Tct~(B, 1) F~t~(B, 1; to, 3,, ~2) 

(~"( 2 rO ~ caj - 

+ I  dl ~?~(B, 1) FI,~ 1; 3,, 3_,) (59) 
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Equation (59) determines the r2 dependence of the Brownian particle dis- 
tribution F]~ The second term on the r.h.s, can be evaluated in a 
straightforward way using Eqs. (31) and (45)-(47) with the result 

f d l  T~)(B, 1) F]~ z,, r2) Fe~(1 IX) 

= \ - ~ - K  ) ' \ 2x / 3  ~--~- ~--~+U F]~ (60) 

A more subtle analysis is required to evaluate the term in Eq. (59) 
involving the % ~ oo limit. One has to consider the terms of order ,  in the 
hierarchy (37) which determine the evolution of the first-order corrections 
F{III ~, F] 1~ ..... In general, the hierarchy equations determining the Zo 
dependence of the first-order corrections FI~] I, s = 1, 2 ..... follow from the 
inhomogeneous pseudo-Liouville equation, derived by a straightforward 
expansion in powers of e from the homogeneous equation (15), 

{a-~o+~(ui 'a -~i  T'~ Ta-(i,J'} 

x p~t~(B, 1,2,...; Zo, Zt, Z2) 
{ o) } cO + U  ~ +~T~I~(B,j) p~~ 1,2,...;zl,z,) (61) : - -  . _ 

3 

where plOl and p~*~ are the zeroth- and first-order terms in the multiple scale 
expansion of the nonequilibrium ensemble describing the state of the whole 
system. The structure of plOl is uniquely determined by Eqs. (45)-(47) 
whereby 

p~~ 1,2,...;Zl,Z2)=F~l~ (62) 

where pequ(1, 2,... IX) is the equilibrium state of the fluid in the presence of 
the Brownian particle fixed at point X. Equations (55) and (62) lead to the 
relation 

-- + U" p~~ 1, 2,...; r I , z2) 

cO 
= -FIt~ ~l, r2) U "~-~ p"q"( 1, 2,... IX) (63)  

The X dependence of peq comes from the excluded volume factor 

1--I 0 ( I X -  xil - (1 + KY~ (64) 
j \ 2x JJ 
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Using the identity 

6 (  IX-xil  \ 2K ,/] \--~gg ] j d d 6 ( X - x j - ( ~ - K ) a  ) (65, 

we find 

O-X p 'q( l '2 ' ' ' ' lx)= \-2--ff-~: / fdda x j -  \ 2K ) 

x peq(1, 2,... IX) (66) 

which allows the r.h.s, of Eq. (63) to be reexpressed as 

_~ fl + K"]" ( X-xi k,--2"~'-~ ] 
X peq(l,  2,,.. } X) F]~ zl, z,) (67) 

Now, taking into account the structure (62) of p~O} and using Eq. (A.5), we 
find 

[~ T~'(B, j ) ]  p(~ l, 2,...; zl, T2) 
J 

(o)} 
_ ~-d_(j), ~-~+U O~~ 1,2,...;zl,r2) (68) 

where the notation o ~  (j) has been introduced to denote the dimensionless 
"force" 

~ _ ( j )  = \ ~ , /  f dO [2(uj. O) z 0( -Y- _ (1  -t- K'~ d ) uj.d)]d6(X-xj \ 2~ ) 
(69) 

Adding up (67) and (68), we see that the first term on the r.h.s, of (68) is 
exactly canceled by the term (67). Hence, the inhomogeneity in Eq. (61) 
(i.e., its r.h.s.) has the form 

--.a~a_(O) " -~-~-k U p~~ 1,2,...;'rl,z2) (70) 
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where 

~ d  (0) = ~ ~ (j) (71) 
J 

is the total (dimensionless) "force" resulting from collisions of the fluid 
particles with particle B. Equation (61) has thus been cast in the form 

xp~'J(B, 1, 2,...; %, r l ,  r2) 

= --~-d(0)" (0--~+ U)p'~ 1, 2,...;z., z2) (72) 

In view of the initial condition (50), we are interested in finding the 
solution of Eq. (61) which vanishes at ~o=0. The equilibrium state 
peq(l, 2,... IX) is invariant under the dynamical evolution of the fluid in the 
external field exerted by the Brownian particle fixed at X. Hence, the 
relevant solution of the first-order equation (61) reads 

p(LI(B, 1, 2,...; to, Zl, z2) 

(0) 
- - -  dz~-d( - -v )  �9 ~ -~+U peq(1,2, . . . lX)F]~ 

In Eq. (73), ~ d ( - - Z )  is the "force" ~d_(0) on particle B propagated by the 
intrinsic fluid dynamics in the presence of the Brownian particle, fixed at 
point X, backward in time to the instant ( - z ) .  The reduced distribution 
F]~I(B, 1;%, z~, "t'2) , which we need to evaluate the derivative OF]~ 
[-see Eq. (59)], can be calculated from Eq. (73) in a straightforward way. It 
will be convenient to use the notation (...)t,qlX~ to denote the average 
value over the equilibrium ensemble p~q(1, 2,... IX). Then 

F]~,~(B, 1; to, ~1, r2) 

= - -  d z ( N ( 1 ) ~ d ( - z ) ) t ~ q l x l  �9 ~--~+U F~~ (74) 

where N(1) is the microscopic fluid number density at the phase point 
I = ( x , , u ~ ) ,  

N ( 1 ) = ~ 6 ( I - j ' )  
j '  

= ~ di(Xl -- xi,) 6(at -- ui.) (75) 
j .  

822/76/I-2-35 
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Inserting Eq. (74) into Eq. (59) and using the result (60), we eventually find 

f -  V~~ r,, ~) 
aT2 

d d 

+ (i+,, 'r  (1+,,q 8 o 
~-~-~ ] +~~ 2+ ] + ( 2 + ) l ' 2 + ' ( + + u ) }  

• F~~ rl, z2) (76) 

where the "forces" ~'+~ ~a_ have been defined in Eqs. (69), (71). 

7. REDUCTION TO THE FOKKER-PLANCK FORM 

The isotropy of the equilibrium state allows to rewrite the first term on 
the r.h.s, of Eq. (76) as 

~,~--~. ~-~+U F~m(B;rt,r2) (77) 

where 

f? ~?--~ <o~ (0)- ~"_ ( - , )  > ~oq,x, (781 

We shall also use the notation 

Ca [1 +K\28 (1 + x'~ 
2 = t--~-x ) 7 (2~)'/2 h]q t -~--~--K ] (79) 

Then, combining Eqs. (37), (55), and (76)-(79) and considering the 
"physical line" (41), we obtain the evolution equation 

{ 0, 0(0 )} OF]~ - e U  ~--~+e-~ ~-~" ~-~+U 

x Fll~ er, e2~) (80) 

where the dimensionless friction coefficient is 

~d d d =~t+~2 (81) 
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Finally, returning to the original variables R and V [see Eq. (16)], we 
arrive at the Fokker-Planck equation 

~ + V "  f,(B;t)=(-f~" V+ M 0-V f,(B;t) (82) 

In accordance with (81), the friction coefficient ( appearing in Eq. (82) 
is the sum of two terms 

1 (tr 22")28 (tr 2__...~S) (. = ~ -~ (2rtmkB T) 1/2 peq (83) 

and 

(2 3M-kB'T o dz (~+(0) 'o~_(-z))teqlx,  (84) 

where 

peq ---- O" -3h~q 

The final form of the microscopic "forces" appearing in (84) is 

~,~=~i (tr2"S)Z f d62rn(vi'f)20(T-vi'd)df(R-(tr2 ----~Z) _ ri) 
(85) 

8. DISCUSSION 
The main result of this paper is the derivation of the Fokker-Planck 

equation governing the evolution of the distribution function of a single 
heavy particle in a hard-sphere fluid from the exact hard-sphere hierarchy 
of kinetic equations for the total system (Brownian particle and bath par- 
ticles). The derivation is based on a multiple-time-scale analysis, already 
used by Cukier and Deutch ~6~ for the case of continuous interactions 
between all particles of the system. Although similar in spirit, the present 
derivation is technically more involved, due to the singular nature of the 
hard-sphere dynamics. A byproduct of our calculation is an exact expres- 
sion for the friction coefficient (, which, within our perturbative analysis, 
naturally splits into two contributions 

~=(J+~2 (86) 
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which are of quite different nature. The term (~, which, according to 
Eq. (83), is proportional to the equilibrium fluid density at contact with 
the Brownian particle, pcq((tr+~r)/2), corresponds to the prediction of 
Enskog's kinetic theory, c13~ The term (2, given by (84), involves dynamical 
correlations between time-displaced momentum transfers absorbed by the 
Brownian particle from the equilibrium fluctuations of the suspending fluid. 
Both terms are seen to be proportional to Z "2, while, according to Stokes' 
law, valid for large _r, the sum should be proportional to Z', indicating 
a large degree of cancellation between both contributions; this will be 
explicitly apparent in the second paper of this series. The formulas are valid 
for any size ratio _r/a, provided the Brownian particle is much heavier than 
the bath particles, since the derivation is valid in the limit (m/M)~/2~ O. 
The evaluation of the Enskog contribution (~ requires the knowledge of 
the equilibrium fluid density at contact pCq, i.e., of the contact value of 
the distinct pair distribution function in a binary mixture of a and _r 
spheres, in the infinite-dilution (tracer) limit of the large spheres. This is 
readily available, e.g., from scaled particle theory, t'5~ An evauation of the 
dynamical contribution, which accounts for correlated collision events not 
included at the Enskog level of approximation, requires a calculation of the 
equilibrium time correlation function appearing in the Kubo integral of 
equation (84). An "exact" calculation of this function can only be achieved 
by molecular dynamics simulations, provided finite-size effects are handled 
correctly. Such a calculation will be the object of the second paper of this 
series. 

APPENDIX 

The expansion of the collision operator T~_, defined in Eq. (20), in 
powers of e requires a similar expansion of the operator b~-, defined via 
Eq. (21). In the subsequent analysis, we shall make use of the expansion of 
this operator in powers of e, 

b~(B, 1)-b(a~ 1)+ebt')(B, 1)4- .-. (A.1) 

To zeroth order in e 

[b~~ 1 )X-I(U, ul) = x(U, ut - 2(6" Ill)(T ) (A.2) 

where X is any function of the reduced velocities U and u I. The operator 
b~ ~ thus describes the effect of collisions of the fluid particles with the 
Brownian particle of infinite mass (particle B acts here as a fixed external 
field). 
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The first-order correction b~ ~)(B, 1) acts according to the formula 

[b~')(a, 1)z](U,u,)=2 (O-u,)~.~-O-(o.u)~ 0 

x x(U, u) - 2(#" u~)#) (A.3) 

Combination of Eqs. (A.2) and (A,3) with Eq. (20} leads to the first two 
terms of the e-expansion of the binary collision operator TL (B, 1), 

TL(B, l)= T(_~ I)+ET~)(B, I)+ ... (A.4) 

One finds 

_ (I l . T~)(B, 1)=\--~ ) j d ~ ( - u , ' d ) 0 ( - u t ' 6 )  

• {6 (x -  ( ~ )  ,~- x,) b,~ ' ) 

T~)(B, 1)=\-~-~---/ jd~ (U.O)O(-u,.O) 

• {6 (X-(~-~K) ~- x,) b~~ 1) 

x ( 5 . u , ) d . ~ - - ~ - ( d . U ) 4 "  b~~ l) (A.6) 
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